

Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV-9510AB Series

Features

Fixed orifice low lead DZR brass double regulating valve. Intended for HVAC and domestic water use. Threaded F/F (ASME B1.20.1 - NPT) or solder joint ends (ASME B16.22). Design according to BS7350. Tolerance on nominal C_{vs} ±3% (test according to BS7350). 300 WOG (Maximum 300psi up to 160°F. Maximum 150psi at 260°F.)

Available on following versions:

- MBV-T-9517AB, threaded ends, with test points
- MBV-S-9519AB, solder joint ends, with test points

Working Conditions:

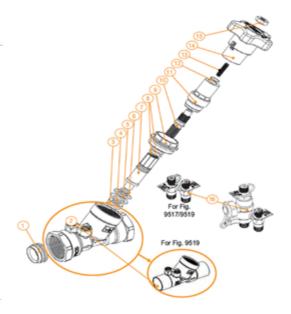
 Water (15°F to 260°F) below 32°F only for water with added anti-freezing fluids over 212°F only for water with added anti-boiling fluids

Material Specifications

1. Venturi Insert: Low Lead DZR Brass ASTM C27453

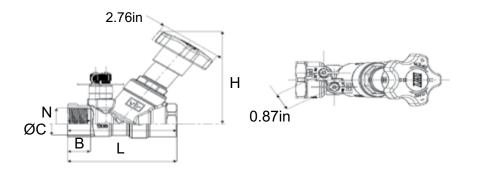
2. Body: Low Lead DZR Brass ASTM C27453

3. Balancing Cone: Low Lead DZR Brass ASTM C27453


4. Gasket Disc: PTFE

For additional information on Gruvlok bag and tag coil kit service, contact an ASC Engineered Solutions Representative.

- 5. Disc¹: Low Lead DZR Brass ASTM C27453
- 6. Disc O-Ring¹: EPDM Perox
- 7. Disc Stem: Low Lead DZR Brass ASTM C27453
- 8. Stem O-Ring: EPDM Perox
- 9. Union¹: Low Lead DZR Brass ASTM C27453
- 10. Stem: Brass ASTM B124 C37700
- 11. Bonnet: Low Lead DZR Brass ASTM C27453
- 12. Stop Spring Ring: Spring Steel
- 13. Screw: Steel
- 14. Handwheel: ABS (Blue)
- 15. Nut: Zinc Plated Steel
- 16. Test Point: DZR Brass² ASTM C35330
- ¹Only on 1¹/₄", 1¹/₂" and 2"
- ² Test points with EPDM gaskets and polypropylene ties



GRUVLOK

An ASC Engineered Solution

Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV–9510AB Series

Fixed Orifice Double Regulating Low Lead Valves

Valve Size	Ν	øC¹	Н	L ²	B ²	Approx. Wt. ² Each	Flow Range
In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg	GPM
U-1/2	1/2 - 14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.27-0.71
15	_	15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	_
L- 1/2	1/2 - 14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.49-1.17
15	_	15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	-
1/2	1⁄2-14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.98-2.35 ³
15	_	15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	_
3/4	³ / ₄ - 14	0.877-0.881	4.06	3.78/4.18	0.75/0.76	1.43/1.34	2.19-5.15 ³
20	_	22.28-22.38	103.1	96.0/106.2	19.1/19.3	0.65/0.61	_
1	1 - 11.5	1.128-1.131	4.06	3.94/4.57	0.89/0.92	1.73/1.55	4.09-9.56 ³
25	-	28.65-28.73	103.1	100.1/116.1	22.6/23.4	0.78/0.70	_
11⁄4	1¼-11.5	1.378-1.381	4.06	4.63/5.28	0.98/0.98	2.78/2.53	8.56-19.81
32		35.00-35.08	103.1	117.6/134.1	24.9/27.9	1.26/1.15	-
11/2	11⁄2-11.5	1.628-1.632	4.06	5.00/5.90	0.98/1.10	3.50/3.16	12.84-29.80
40	_	41.35-41.45	103.1	127.0/149.9	24.9/27.9	1.59/1.43	_
2	2 - 11.5	2.128-2.132	4.06	5.72/6.73	1.15/1.35	4.80/4.46	24.09-55.63
50	_	54.05-54.15	103.1	145.3/170.9	29.2/34.3	2.18/2.02	_

¹Tolerance field

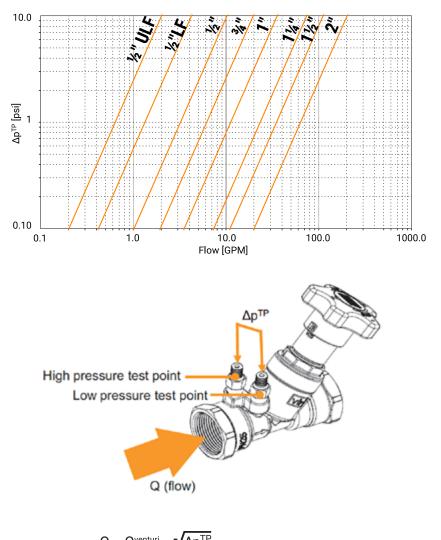
² Threaded ends/soldering ends

³ Dimension with VIR actuators, for more details please consult specific technical sheet ⁴ Suggested flow range applicability (BS7350)

If used with measuring manometers different from those proposed by Anvil-RWV, please

verify that sensibility of the measuring device is compatible with indicated minimum.

For additional information on Gruvlok bag and tag coil kit service, contact an ASC Engineered Solutions Representative.


asc-es.com

Building connections that last*

Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV–9510AB Series

Flow Diagram

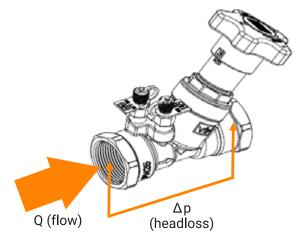
$$Q = C_{vs}^{venturi} \cdot \sqrt{\Delta p^{TF}}$$

 Δp = differential pressure signal in psi generated through the pressure test points

Cvs = flow coefficient

asc-es.com

Building connections that last



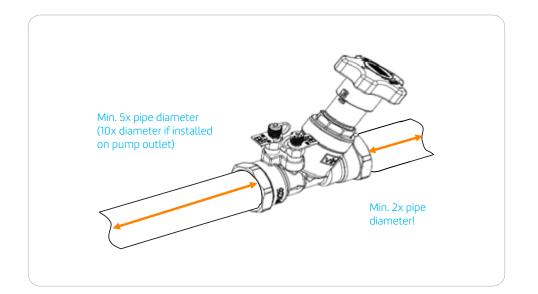
Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV-9510AB Series

Headloss

$$\Delta p = \left(\frac{Q}{C_V}\right)^2$$

Formula linking flow Q (in GPM) and theoretical valve headloss (pressure drop) Δp (in psi). C_V depends on handwheel position as indicated in table.

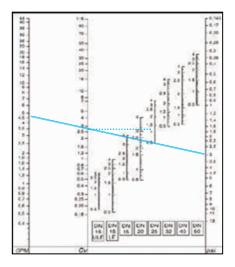
Headloss Calculation


Handwheel	Cv (GPM/psi ^{0.5})								
Position	U-½"	L-1/2"	1/2"	3/4"	1"	11⁄4"	11/2"	2"	
-	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	
0.5	0.177	0.160	0.474	0.474	1.70	2.96	3.14	6.20	
0.7	0.206	0.186	0.474	0.543	2.00	3.38	3.61	7.56	
1.0	0.283	0.287	0.613	0.671	2.42	3.95	4.27	9.65	
1.3	0.331	0.394	0.717	0.809	2.82	4.49	4.96	12.19	
1.5	0.355	0.440	0.809	0.902	3.12	4.83	5.57	14.30	
1.7	0.387	0.501	0.902	0.994	3.48	5.25	6.60	16.64	
2.0	0.445	0.586	0.994	1.12	4.13	6.27	8.99	20.17	
2.3	0.511	0.669	1.10	1.25	4.83	7.82	12.08	23.35	
2.5	0.517	0.696	1.18	1.39	5.28	9.16	14.21	25.12	
2.7	0.527	0.743	1.32	1.62	5.63	10.46	16.34	26.66	
3.0	0.563	0.828	1.60	2.24	6.09	12.21	18.89	28.72	
3.3	0.578	0.864	1.88	2.94	6.49	13.39	20.67	30.57	
3.5	0.594	0.891	2.03	3.39	6.64	13.94	21.54	31.72	
3.7	0.595	0.925	2.12	3.75	6.80	14.34	22.16	32.86	
4.0	0.603	0.953	2.19	4.06	7.10	14.50	22.65	34.36	
4.4	0.605	0.985	2.22	4.24	7.21	-	-	-	

Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV–9510AB Series

Installation

To obtain the best performances valve must be installed on a pipe with its same nominal size preceded and followed by straight pipe lengths as per figure indications.


Fixed Orifice Double Regulating Low Lead Valves Fig. Anvil MBV–9510AB Series

Presetting

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 - 90 - 70 - 70 - 70 - 70 - 90 - 70 - 90 - 70 - 90 - 9	$\chi_2^{\nu} \ \chi_2^{\nu} \ \chi_2^$	$\begin{array}{c} 0,145\\ -0,17\\ -0,20\\ -0,25\\ -0,3\\ -0,35\\ -0,4\\ -0,5\\ -0,6\\ -0,7\\ -0,8\\ -0,9\\ -1\\ -1,2\\ -1,4\\ -1,6\\ -2,2\\ -2,5\\ -3\\ -3,5\\ -4\\ -5\\ -6\\ -7\\ -8\\ -9\\ -10\\ -11\\ -13\\ \end{array}$
GPM	Cv		psi

Using diagram above, determine the presetting position of the valve with the given design flowrate and headloss:

- 1. Draw a straight line joining design flowrate and design headloss;
- Determine design C_V value as intersection of drawn line and C_V axis;
- Draw a straight horizontal line from intersection previously identified and the specific valve size axis;
- 4. Intersection determines handwheel position to use for presetting.

In the example for a design flowrate of 5GPM and design Δp 3psi handwheel position of 1.35 is determined for a 1" valve.